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We have shown that the steady state probability distribution function of a diffusion-coalescence system on a
one-dimensional lattice of length L with reflecting boundaries can be written in terms of a superposition of
double-shock structures which perform biased random walks on the lattice while repelling each other. The
shocks can enter into the system and leave it from the boundaries. Depending on the microscopic reaction rates,
the system is known to have two different phases. We have found that the mean distance between the shock
positions is of order L in one phase while it is of order 1 in the other phase.
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Recently, the investigation of the microscopic structure
and dynamics of shocks, defined as discontinuities in the
space dependence of the densities of particles in one-
dimensional driven diffusive systems, has drawn much atten-
tion �1–13�. It has been shown that the steady states of some
of these systems can be explained in terms of collective ex-
citations with one or more conservation laws.

In �4� three families of single-species driven diffusive sys-
tems are studied in which a traveling shock with a steplike
density profile exists and behaves like a one-particle excita-
tion in the system, provided that the microscopic hopping
rates are fine tuned. This has also been observed in systems
with more than one species of particles �5–10�. On the other
hand, the steady states of these systems can be written in
terms of a superposition of such product shock measures. In
�6� and �11� the authors have shown that such steady states
are associated with the existence of two-dimensional repre-
sentations of the quadratic algebras of these systems when
they are studied using the matrix product formalism �MPF�
�for a recent review, see �14��. According to this formalism
the steady state of some one-dimensional driven diffusive
systems can be written in terms of products of noncommut-
ing operators which satisfy a quadratic algebra.

However, little is known about the microscopic dynamics
of multiple shocks in these systems. The only example is
given in �3�, where multiple shocks are studied for a partially
asymmetric simple exclusion process with open boundaries.
In this paper, we investigate the dynamics of a double-shock
structure in a branching coalescing system with nonconserv-
ing dynamics and reflecting boundaries. The steady state
properties of this system have already been studied in �15�
and �16�. It turns out that, depending on the microscopic
reaction rates of the system, it can be in two different phases:
a high- and a low-density phase. Since the dynamics of the
system is nonconserving, the mean density of the particles in
the system in the high-density phase is greater than that in
the low-density phase. However, it has been shown that, if
one considers a canonical ensemble in which the total num-
ber of particles is conserved, then the system has two phases:
a high-density and a shock phase. In this case the shock does

not have any dynamics �17�. In �4� the authors have shown
that a single shock with biased random walk dynamics can
evolve in this system provided that the boundaries are open
so that the particles can enter and leave the system from
there. Later, in �12� and �13�, it was shown that in an infinite
system double-shock structures with random walk dynamics
can also evolve in the system. However, nothing is known
about the dynamics of these double-shock structures in a
system with boundaries. Our main attempt in this paper is to
study the microscopic dynamics of such structures on a lat-
tice with finite length and reflecting boundaries.

In what follows we first define the model and then using
the Hamiltonian formalism show how a double-shock prod-
uct measure evolves in time under the Hamiltonian of the
system. From there we construct the steady state probability
distribution function of the system as a linear combination of
such double-shock product measures. The mean distance be-
tween the shock positions is also calculated in the thermody-
namic limit.

The system in question consists of identical classical par-
ticles on a one-dimensional lattice of length L. There is no
injection or extraction of particles at the boundaries. The
reaction rules between two consecutive sites k and k+1 on
the lattice are as follows:

0” + A → A + 0” with rate q ,

A + 0” → 0” + A with rate q−1,

A + A → A + 0” with rate q ,

A + A → 0” + A with rate q−1,

0” + A → A + A with rate �q ,

A + 0” → A + A with rate �q−1, �1�

in which A and 0” stand for the presence of a particle and a
hole, respectively. As can be seen, the parameter q deter-
mines the asymmetry of the system. For q�1 �q�1� the*farhad@ipm.ir
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particles have a tendency to move in the leftward �rightward�
direction. For any q the model is also invariant under the
following transformations:

q → q−1, k → L − k + 1, �2�

in which k is a given site on the lattice. Throughout this
paper we will consider only the case q�1. The results for
the case q�1 can easily be obtained using �2�. By formulat-
ing the stochastic Hamiltonian of the system as a quantum
spin chain, it has been shown that it is completely integrable
�15,16�. As we mentioned, the system has two different
phases depending on the values of q and �. For q�1 it has
a high-density phase for q2�1+� and a low-density phase
for q2�1+�. In the high-density phase the density profile of
particles has its maximum value near the left boundary while
it is a constant �= �

1+� in the bulk of the lattice. It also drops
exponentially to zero near the right boundary. The particle
correlations exist at both boundaries. In the low-density
phase the density profile of particles again has its maximum
value near the left boundary but it quickly drops exponen-
tially to zero in the bulk and remains zero throughout the
lattice. In this phase the particle correlations exist only near
the left boundary. The mean density of particles is of order 1

L
in this phase. On the transition line q2=1+�, the density
profile of particles drops exponentially near the left boundary
while it changes linearly in the bulk of the system. The mean
density of particles in the bulk of the lattice is equal to �

2�1+��
in the thermodynamic limit.

Recently, it has been shown that the steady state probabil-
ity distribution function of some one-dimensional driven dif-
fusive systems can be written in terms of interactions of
single-shock structures �6�. In the following we will show
that the steady state of our coalescence system defined by
Eq. �1� can also be written in terms of superposition of
double-shock structures. These shocks repel each other while
performing biased random walks on the lattice.

Any state of the system is defined through a probability
measure P� on the set of all configurations �
= ��1 ,�2 , . . . ,�L�, �k� �0” ,A�. For our purposes it is conve-
nient to use the Hamiltonian formalism where one assigns a
basis vector ��� of the vector space �C2��L to each configu-
ration and the probability vector is defined by �P�
=	�P����, which is normalized such that 
s � P�=1 where

s�=	�
��. The time evolution is now described by the mas-
ter equation

d

dt
�P�t�� = H�P�t�� , �3�

in which H is called the Hamiltonian and its matrix elements
are the hopping rates between any two configurations. For a
system defined on a lattice of length L with reflecting bound-
aries the Hamiltonian can be written as

H = 	
k=1

L−1

hk,k+1, �4�

where hk,k+1 acts nontrivially only on sites k and k+1. In a
basis defined as

�0”� = �1

0
�, �A� = �0

1
� , �5�

the local Hamiltonian of our system in Eq. �4� has the fol-
lowing form:

hk,k+1 =
0 0 0 0

0 − q�1 + �� q−1 q−1

0 q − q−1�1 + �� q

0 q� q−1� − �q + q−1�
� .

�6�

We define a double-Bernoulli-shock measure, which is a
product measure with two jumps in the local particle density
associated with two random walkers �the shock fronts� at
sites m and n, as

�Pm,n� = �1

0
��m

� �1 − �

�
��n−m−1

� �1

0
��L−n+1

, �7�

in which 0�m�n−1 and 1�n�L+1. Here we have intro-
duced two auxiliary sites 0 and L+1. A simple sketch of this
shock measure is given in Fig. 1. It is easy to verify that this
family of shock measures generates a subspace of the vector
space of states that is invariant under the time evolution gen-
erated by H, and thus the many-particle problem is reduced
to a two-particle one. As we mentioned earlier, the time evo-
lution of such a product shock measure has already been
studied for an infinite system with no boundaries �12,13�;
nevertheless, in this paper, we aim to study a finite system
with reflecting boundaries. The time evolution equations for
�Pm,n� are given by

H�Pm,n� = q−1�Pm+1,n� + q�1 + ���Pm−1,n� + q−1�1 + ���Pm,n+1�

+ q�Pm,n−1� − �q + q−1��2 + ���Pm,n�

for m = 1, . . . ,L − 2 and n = m + 2, . . . ,L ,

0 1 nm L L+1

0

ρ

FIG. 1. Sketch of a double-shock structure. The shock positions
are defined at the sites m and n.
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H�P0,n� = �q−1 − q��P1,n� + q−1�1 + ���P0,n+1� + q�P0,n−1�

− q−1�2 + ���P0,n� for n = 2, . . . ,L ,

H�Pm,L+1� = q−1�Pm+1,L+1� + q�1 + ���Pm−1,L+1� + �q − q−1�

��Pm,L� − q�2 + ���Pm,L+1�

for m = 1, . . . ,L − 1,

H�P0,L+1� = �q−1 − q��P1,L+1� + �q − q−1��P0,L� ,

H�Pm,m+1� = 0 for m = 0, . . . ,L . �8�

As can be seen, for q�1 the left random walker performs a
biased random walk and preferentially hops to the left re-
gardless of the values of q and �. In contrast, the right ran-
dom walker preferentially hops to the left for q2�1+� and
to the right for q2�1+�. On the coexistence line where q2

=1+�, the right random walker performs an unbiased ran-
dom walk. The left �right� random walker can also leave the
lattice only from the left �right� boundary. The diffusion co-
efficients and also the velocities of the random walkers can
now be easily calculated from Eq. �8�.

Let us now explain why the random walkers repel each
other. It can easily be seen from Eq. �8� that, as long as the
shock positions are more than a single site apart, they never
meet each other during the time evolution. However, it seems
from there that the random walkers can meet each other
when they are a single site apart. In what follows we show
that this is not the case. For instance we consider the first
equation in Eq. �8� for n=m+2 where the shock positions are
a single site apart. Rewriting this equation in terms of a new
definition for the shock measure as

�P̃m,n� = �1

0
��m

� �0

1
��n−m−1

� �1

0
��L−n+1

, �9�

one finds

H�P̃m,m+2� = q��P̃m−1,m+2� + q�P̃m−1,m+1� + q−1�P̃m+1,m+3�

+ q−1��P̃m,m+3� − �q + q−1��1 + ���P̃m,m+2� .

As can be seen the shock positions never get closer than a
single site apart. In fact, the dynamical rules �1� do not allow
the shock fronts to get closer together than a single site since
this results in an empty lattice. This is why we say that the
random walkers repel each other. One can easily check this
for other equations in Eq. �8� in which the shock positions

are a single site apart to see that in terms of the �P̃m,n� the
shock positions never meet and the minimum distance be-
tween them is at least a single site.

In this paper, we are especially interested in the steady
state of the system. One should note that an empty lattice is
a trivial steady state for the system. It can be seen from Eq.
�1� that an empty lattice never evolves in time. There is
actually a nontrivial steady state for the system in which the
lattice contains some particles. The nontrivial steady state of
the system can now be constructed as a superposition of
double-shock measures as follows:

�P�� =
1

ZL
	
m=0

L

	
n=m+1

L+1

	m,n�Pm,n� , �10�

provided that we exclude the empty lattice from �P�� by re-
quiring


0�P�� = 0, �11�

in which

�0� = �0”��L =
1

0

]

0
� �12�

is associated with a configuration with no particles in the
system. The normalization factor ZL in Eq. �10� can easily be
obtained from ZL=	m=0

L 	n=m+1
L+1 	m,n. By requiring H�P��=0

we find a system of equations for the 	m,n’s. It turns out that
this system of equations has the following solution:

	m,n =
�q2 − 1�

�1 − q2�
m,0� q2−1
q2 �
n,L+1

q−2�m+n��1 − �1 + ��n−m−1�

for 0 � m � L − 1 and m + 2 � n � L + 1. �13�

Note that the 	m,n’s in Eq. �13� are also valid for q2=1+�,
and at the coexistence line one should only replace � with
q2−1 in Eq. �13�. One can see from Eq. �7� that there are
L+1 states in which the shock positions are at two consecu-
tive sites. The states �Pm,m+1� point to an empty lattice. Since
the empty lattice is a trivial steady state of the system, the
coefficients of these states in Eq. �10�, i.e., the 	m,m+1’s, are
taken to be equal to 	�. The condition �11� for q2�1+� can
now be calculated and it is equal to

	� =
1

L + 1
� q2�

�q4 − 1��1 − q2�1 + ���

+
q2�2

�q2 − 1��q2 − 1 − ���1 − q2�1 + ���� 1

q2�1 + ���
L

+
q2�

�q4 − 1��q2 − 1 − ��
q−4L� . �14�

It turns out that, on the transition line q2=1+�, 	� becomes

	� = −
��q4 − 1�L − q2�q−4L + q2

�L + 1��q4 − 1��q2 + 1�
. �15�

The normalization factor ZL, which is called the grand-
canonical partition function of the system, can now be cal-
culated and after substituting 	� from Eqs. �14� and �15� one
finds
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ZL = �
q2�2�q2 − 1�−1

�1 − q2�1 + ����1 + � − q2��1 − �1 + �

q2 �L

− � 1

q2�1 + ���
L

+ q−4L� for q2 � 1 + � ,

1 − q−4L

1 + q2 L for q2 = 1 + � . � �16�

As one can see our results obtained here are exactly those
obtained in �15� and �16� using different approaches. Using
the steady state probability distribution function �10�, one
can easily calculate the density profile of the particles and
also any correlations in the steady state. However, since the
results are exactly those obtained in the above mentioned
papers, the results are not given here.

Having the probability of finding the random walkers at
sites m and n in the steady state, one can calculate the mean
distance of the shock fronts in the steady state, defined as,


d� =
1

ZL
	
m=0

L

	
n=m+1

L+1

�n − m − 1�	m,n. �17�

It turns out that in the thermodynamic limit L→� it is given
by


d� � �
L for q2 � 1 + � ,

1

2
L for q2 = 1 + � ,

O�1� for q2 � 1 + � .
� �18�

In the high-density phase q2�1+� the shock fronts have
their maximum distance while in the low-density phase they
have the minimum distance, which is of the order of a single
site. One should note that the mean distance between the two
shock fronts changes abruptly from one phase to the other
phase, which can be a sign of a phase transition in the sys-
tem.

It is also interesting to study the probability of finding
each shock front at a given site in the steady state. The prob-
ability of finding the left shock front at the site m is defined
as

Pm = 	
n=m+1

L+1

	m,n for 0 � m � L . �19�

In the thermodynamic limit L→� and in the high-density
phase, Pm is an exponential function with the inverse length
scale ln�q4�, while in the low-density phase it is an exponen-
tial function with the inverse length scale equal to ln�q2�1
+���. On the other hand, the probability of finding the right
shock front at site n is given by

Pn = 	
m=0

n−1

	m,n for 1 � n � L + 1. �20�

In the thermodynamic limit L→� and in both the high- and
the low-density phases, this probability distribution function
has an exponential behavior with the inverse length scale
ln�q2�1+��−1�. This explains why the system has three dif-
ferent length scales.

In this paper we have studied a coalescence system with
reflecting boundaries and showed that its steady state can be
explained in terms of superposition of the probability distri-
bution of two interacting random walkers which perform bi-
ased random walks while repelling each other. The random
walkers can also leave or enter from the boundaries. One
should note that the random walk picture actually fails at the
left boundary for q�1 �and at the right boundary for q�1�.
In fact, as can be seen from Eq. �8�, the left random walker
should enter the system with a negative rate. This has already
been observed in the branching-coalescing model with open
boundaries studied in �4�. Apart from this, we have found
that the steady state probability distribution function of the
system is exactly the one obtained in �15,16� which obvi-
ously generates the same density profile of particles in the
system in each phase as was calculated by the same authors.
It is interesting to consider more general reaction rates in Eq.
�1� and see under what constraints the random walk picture
exists in a system with reflecting boundaries. This is under
investigation and will be presented elsewhere.
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